1. Авдеева О.А., Цыплаков А.А. (2015). Метод адаптивного оценивания срочной структуры процентных ставок // Экономический журнал ВШЭ. Т. 19. № 4. С. 609–639.
2. Лукашин Ю.П. (2003). Адаптивные методы краткосрочного прогнозирования временных рядов. М.: Финансы и статистика.
3. Цыплаков А.А. (2022). Стационарность и рост в агент-ориентированной модели экономи-ки // Мир экономики и управления. Т. 22. № 1. С. 84–102.
4. Шеннон Р. (1978). Имитационное моделирование систем – искусство и наука. М: Мир.
5. Arthur W.B. (1991). Designing economic agents that act like human agents: A behavioral ap-proach to bounded rationality. The American Economic Review, 81, 2, 353–359. Papers and Proceedings of the Hundred and Third Annual Meeting of the American Economic Associa-tion, May, 353–359.
6. Arthur W.B., Holland J., LeBaron B., Palmer R., Tayler P. (1997). Asset pricing under endo-genous expectations in an artificial stock market. In: W.B. Arthur, S. Durlauf, D. Lane (eds.). The economy as an evolving complex system II. Reading: Addison-Wesley, 15–44.
7. Brenner T. (2006). Agent learning representation: Advice on modelling economic learning. Сh. 18. Handbook of Computational Economics, 2, 895–947.
8. Carceles-Poveda E., Giannitsarou C. (2007). Adaptive learning in practice. Journal of Economic Dynamics & Control, 31, 2659–2697.
9. Creal D., Koopman S.J., Lucas A. (2013). Generalized autoregressive score models with applica-tions. Journal of Applied Econometrics, 28, 5, 77–795.
10. Dawid H., Delli Gatti D. (2018). Agent-based macroeconomics. In: Handbook of computational economics. Vol. 4. C. Hommes, B. Lebaron (eds.). SSRN Electronic Journal, 63–156. DOI: 10.2139/ssrn.3112074
11. DeAngelis D.L., Diaz S.G. (2019). Decision-making in agent-based modeling: A current review and future prospectus. Frontiers in Ecology and Evolution, 6, 237.
12. Evans G.W., Honkapohja S. (2001). Learning and expectations in macroeconomics. Princeton: Princeton University Press.
13. Harvey A.C. (2013). Dynamic models for volatility and heavy tails: With applications to financial and economic time series. Econometric society monograph. Cambridge: Cambridge University Press.
14. Hunter E., Namee B.M., Kelleher J.D. (2017). A taxonomy for agent-based models in human in-fectious disease epidemiology. Journal of Artificial Societies and Social Simulation 20, 3, 2. Available at: https://www.jasss.org/20/3/2.html DOI: 10.18564/jasss.3414
15. Hyndman R.J., Koehler A.B., Ord J.K., Snyder R.D. (2008). Forecasting with exponential smoothing: The state space approach. New York: Springer.
16. Iori G., Porter J. (2018). Agent-based modeling for financial markets. In: The Oxford handbook of computational economics and finance. S.-H. Chen M. Kaboudan, Y.-R. Du. (eds.). New York: Oxford University Press, 635–666. DOI: 10.1093/oxfordhb/9780199844371.013.43
17. Kirman A. (2011). Learning in agent-based models. Eastern Economic Journal, 37, 20–27.
18. Lange K.L., Little R.J., Taylor J.M.G. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association, 84, 881–896.
19. Leijonhufvud A. (1993). Towards a not-too-rational macroeconomics. Southern Economic Jour-nal, 60, 1, 1–13.
20. Nguyen J., Powers S.T., Urquhart N., Farrenkopf T., Guckert M. (2021). An overview of agent-based traffic simulators. Transportation Research Interdisciplinary Perspectives 12, December, 100486.
21. Rand W. (2006). Machine learning meets agent-based modeling: When not to go to a bar. C.M. Macal, D.L. Sallach, M.J. North (eds.). Proceedings of the Agent 2006 conference on social agents: Results and prospects. Argonne National Laboratory and University of Chica-go, Chicago, 51–59.
22. Shannon R.E. (1976). Simulation modeling and methodology. WSC '76: Proceedings of the 76 Bi-centennial conference on winter simulation, December, 9–15.
23. Sinitskaya E., Tesfatsion L. (2015). Macroeconomies as constructively rational games. Journal of Economic Dynamics & Control, 61, 152–182.
24. Tanizaki H. (1996). Nonlinear filters: Estimation and applications. 2nd ed. Berlin, Heidelberg: Springer-Verlag.
25. Tesfatsion L. (2012). Detailed notes on the Santa Fe artificial stock market (ASM) model. Availa-ble at: http://www2.econ.iastate.edu/tesfatsi/SFISTOCKDetailed.LT.htm
26. Timmermann A.G. (1993). How learning in financial markets generates excess volatility and pre-dictability in stock prices. The Quarterly Journal of Economics, 108, 4, 1135–1145.
27. Weidlich A., Veit D. (2008). A critical survey of agent-based wholesale electricity market models. Energy Economics 30, 1728–1759.
ГАУГН-Пресс © 2013-2024.
Комментарии
Сообщения не найдены