1. Aganbegyan A.G., Valtukh K.K. (1974). The use of national-economy models in planning. Mos-cow: Ekonomika (in Russian).
2. Akopov A.S., Beklaryan A.L., Zhukova A.A. (2023). Optimization of characteristics for a sto-chastic agent-based model of goods exchange with the use of parallel hybrid genetic algo-rithm. Cybernetics and Information Technologies, 23 (2), 87–104.
3. Akopov A.S., Beklaryan L.A., Beklaryan A.L. (2022). Multisector bounded-neighborhood model: Agent segregation and optimization of environment’s characteristics. Math. Models & Comput. Simul., 14, 503–515 (in Russian).
4. Akopov A.S., Beklaryan L.A., Thakur M. (2022). Improvement of maneuverability within a mul-tiagent fuzzy transportation system with the use of parallel biobjective real-coded genetic algorithm. IEEE Transactions on Intelligent Transportation Systems, 23 (8), 12648–12664.
5. Akopov A.S., Beklaryan L.A., Thakur M., Verma D.B. (2019). Parallel multi-agent real-coded genetic algorithm for large-scale black-box single-objective optimisation. Knowledge-Based Systems, 174, 103–122.
6. Binh T., Korn U. (1997). MOBES: A multiobjective evolution strategy for constrained optimiza-tion problems. In: Proceedings of the Third International Conference on Genetic Algorithms. Czech Republic, 176–182.
7. Deb K., Pratap A., Agarwal S., Meyarivan T. (2002a). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6 (2), 182–197.
8. Deb K., Thiele L., Laumanns M., Zitzler E. (2002b). Scalable multi-objective optimization test problems. Proceedings of the 2002 IEEE Congress on Evolutionary Computation, 1, 825–830.
9. Ershov Yu.S., Melnikova L.V., Suslov V.I. (2009). The practice of the use of multiregional input-output models in strategic forecasts of Russian economy. Vestnik NSU. Series: Social and Economics Sciences, 9 (4), 9–23 (in Russian).
10. Fonseca C.M., Fleming P.J. (1995). An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3 (1), 1–16.
11. Holland J.H. (1992). Genetic Algorithms. Scientific American, 267 (1), 66–73.
12. Jin Y. (2005). A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, (9), 3–12.
13. Kennedy J. (1997). The particle swarm: Social adaptation of knowledge. Proceedings of IEEE In-ternational Conference on Evolutionary Computation, 303–308.
14. Kiyotaki N., Wright R. (1989). On money as a medium of exchange. Journal of Political Econo-my, 97 (4), 927–954.
15. Kursawe F. (1991). A variant of evolution strategies for vector optimization. PPSN I990. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 496, 193–197.
16. Leontief W.W. (1925). Balance of the national economy of the USSR. Methodological analysis of the work of the CSB. Planned Economy: Monthly Journal. Publication of the State Planning Commission of the USSR, 12, 254–258 (in Russian).
17. Lotov A.V., Bushenkov V.A., Kamenev G.K. (2004). Interactive decision maps. Approximation and visualization of the Pareto frontier. Boston: Kluwer Academic Publishers. 307 p.
18. Lotov A.V., Miettinen K. (2008). Visualizing the Pareto Frontier. In: Multiobjective optimization. Interactive and evolutionary approaches, lecture notes in computer science, 5252. Berlin-Heidelberg: Springer, 213–244.
19. Makarov V.L., Bakhtizin A.R., Beklaryan G.L., Akopov A.S., Rovenskaya E.A., Strelkovskii N.V. (2022). Agent-based modeling of social and economic impacts of migration under the government regulated employment. Economics and Mathematical Methods, 58 (1), 113–130 (in Russian).
20. Makarov V.L., Bakhtizin A.R., Beklaryan G.L., Akopov A.S., Rovenskaya E.A., Strelkovskiy N.V. (2020). Agent-based modelling of population dynamics of two interacting social com-munities: Migrants and natives. Economics and Mathematical Methods, 56 (2), 5–19 (in Russian).
21. Makarov V.L., Bakhtizin A.R., Beklaryan G.L., Akopov A.S., Rovenskaya E.A., Strelkovskiy N.V. (2019). Aggregated agent-based simulation model of migration flows of the European Union countries. Economics and Mathematical Methods, 55 (1), 3–15 (in Russian).
22. Makarov V.L., Bakhtizin A.R., Epstein J.M. (2022). Agent-based modeling for a complex world. 2nd ed., revised. Moscow: GAUGN, Scientific publications department. 74 p.
23. Poloni G., Giurgevich A., Onesti L., Pediroda V. (2000). Hybridization of a multi-objective ge-netic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 186 (2–4), 403–420.
24. Pospelov I.G. (2018). A model of random sales. Math. Notes, 103, 453–465 (in Russian).
25. Pospelov I.G., Zhukova A.A. (2012). Stochastic model of illiquid asset trade. Proceedings of MIPT, 2, 131–146 (in Russian).
26. Richmond P., Walker D., Coakley S., Romano D. (2010). High performance cellular level agent-based simulation with FLAME for the GPU. Briefings in Bioinformatics, 11 (3), 334–347.
27. Shatilov N.F. (1967). Modeling the expanded reproduction. M.: Ekonomika (in Russian).
28. Suslov V.I., Domozhirov D.A., Ibragimov N.M., Kostin V.S., Melnikova L.V., Tsyplakov A.A. (2016). Agent-based multiregional input-output model of the Russian economy. Economics and Mathematical Methods, 52 (1), 112–131 (in Russian).
29. Veduta N.I. (1999). Socially effective economy. Moscow: REA (in Russian).
30. Xiaohui Hu, Eberhart R. (2002). Multiobjective optimization using dynamic neighborhood par-ticle swarm optimization. Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat, 02TH8600). Honolulu, HI, USA, 1677–1681.
31. Zitzler E., Laumanns M., Thiele L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Swiss Federal Inst. Technol., Zürich, Switzerland, TIK-Rep. 103 p.
32. Zitzler E., Thiele L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3 (4), 257–271.
ГАУГН-Пресс © 2013-2024.
Comments
No posts found