BEAK THEORY AND MODELING
Table of contents
Share
Metrics
BEAK THEORY AND MODELING
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Authors
Edition
Pages
52-67
Abstract
In a finite-dimensional real space, we consider sets that have a point with both minimum and maximum coordinates on such a set, called its mini - or Maxi-beak, respectively. Conditions sufficient for the existence of sets of beaks are formulated and proved. In systems of inequalities that define such sets, functions are used that are non-increasing or non-decreasing for all arguments except, perhaps, one. Optimization of non-decreasing and non-increasing criteria on a set with a corresponding beak leads to the problem of finding it as a characteristic optimal solution. We introduce the concept of a generalized beak of a set that uses a given quasi-order structure, and consider a sufficient condition for its existence. The dependence of beak coordinates on parameters defining families of sets and the relationship of beaks to solutions of systems of equations is analyzed. A General scheme is proposed for constructing sets that are closed with respect to the introduced binary operations of coordinate minimization and maximization and are used to define sets that have beaks.
Date of publication
01.01.2007
Number of purchasers
0
Views
45
Readers community rating
0.0 (0 votes)
Cite Download pdf 100 RUB / 1.0 SU

To download PDF you should sign in

Full text is available to subscribers only
Subscribe right now
Only article
100 RUB / 1.0 SU
Whole issue
0 RUB / 0.0 SU
All issues for 2007
0 RUB /  SU
1

References



Additional sources and materials

Bagrinovskij K.A. (1977): Osnovy soglasovaniya planovykh reshenij. M.: Nauka.

Bagrinovskij K.A., Busygin V.P., Radchenko V.V. (1978): O metodakh soglasovaniya otraslevykh reshenij v sisteme modelej // Ehkonomika i mat. metody. T. XIV. Vyp. 2.

Bagrinovskij K.A., Busygin V.P. (1980): Matematika planovykh reshenij. M.: Nauka.

Belen'kij V.Z. (1967): Nekotorye modeli optimal'nogo planirovaniya, osnovannye na skheme mezhotraslevogo balansa // Ehkonomika i mat. metody. T. III. Vyp. 4.

Belen'kij V.Z. (1968): O zadachakh matematicheskogo programmirovaniya, obladayuschikh minimal'noj tochkoj // Doklady AN SSSR. T. 183. № 1.

Busygin V.P. (1976): Abstraktnyj mezhotraslevoj analiz. V kn.: “Matematicheskie voprosy postroeniya sistemy modelej”. Novosibirsk: Nauka, Sibirskoe otdelenie AN SSSR.

Ershov Eh.B. (1962): Reshenie obobschennoj zadachi staticheskogo mezhotraslevogo balansa. V sb.: “Materialy k Konferentsii po opytu i perspektivam primeneniya matematicheskikh metodov i ehlektronnykh vychislitel'nykh mashin v planirovanii”. Novosibirsk: SO AN SSSR, Institut matematiki, Institut ehkonomiki.

Ershov Eh.B. (1963): Matematicheskie metody v staticheskoj modeli mezhotraslevogo balansa. Materialy Nauchnogo soveschaniya po problemam mezhotraslevogo balansa. M.: Nauchno-issledovatel'skij ehkonomicheskij institut pri Gosplane SSSR.

Ershov Eh.B. (1965): Ehkonomiko-matematicheskie metody v staticheskoj modeli mezhotraslevogo balansa. V kn.: “Metody planirovaniya mezhotraslevykh proportsij”. M.: Ehkonomika.

Ershov Eh.B. (1967): Ehkonomiko-matematicheskie metody analiza modeli mezhotraslevogo balansa. Avtoreferat dissertatsii na soiskanie uchenoj stepeni kandidata ehkonomicheskikh nauk. M.: NIEhI pri Gosplane SSSR.

Ershov Eh.B. (2002): Teoriya klyuvov i mezhotraslevoe modelirovanie. Preprint WP2/2 002/03. Seriya WP2. Kolichestvennyj analiz v ehkonomike. M.: Gosudarstvennyj universitet—Vysshaya shkola ehkonomiki.

Matematicheskaya ehntsiklopediya (1979): Matematicheskaya ehntsiklopediya. T. 2. M.: Sovetskaya ehntsiklopediya.

Matematicheskaya ehntsiklopediya (1984): Matematicheskaya ehntsiklopediya. T. 5. M.: Sovetskaya ehntsiklopediya.

Arrow K.J. (1951): Alternative Proof of the Substitution Theorem for Leontief Models in the General Case. In: “Activity Analysis of Production and Allocation. Cowles Commission Monograph № 13”. N.Y.: Wiley.

Georgescu-Roegan N. (1951): Some Properties of a Generalized Leontief Model. In: “Activity Analysis of Production and Allocation. Cowles Commission Monograph № 13”. N.Y.: Wiley.

Koopmans T.C. (1951): Alternative Proof of the Substitution Theorem for Leontief Model in the Case of Three Industries. In: “Activity Analysis of Production and Allocation. Cowles Commission Monograph №13”. N.Y.: Wiley.

Samuelson P.A. (1951): Abstract of a Theorem Concerning Substitutability in Open Leontief Models. In: “Activity Analysis of Production and Allocation. Cowles Commission Monograph № 13”. N.Y.: Wiley.