SUBSTITUTION AND COMPLEMENTARITY OF GOODS IN TERMS OF UTILITY FUNCTION
Table of contents
Share
Metrics
SUBSTITUTION AND COMPLEMENTARITY OF GOODS IN TERMS OF UTILITY FUNCTION
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Authors
Vladimir Danilov 
Pages
25-36
Abstract

In The Paper We Consider A Problem Of Characterization Of Utility Functions Which Generates Gross Substitute Demand. Let F Be A Concave Function; We Consider It As A Utility Function Of Some Comsumer Expressed In Terms Of Money. This Means That Demand (At A Price P) Is Formed As Solunion Of The Problem F(X)–P(X) → Max. Such A Function Is A GS-Function If An Increasing Of Price Of Any Good Yields Increasing Of Demand Of Other Goods. We Prove That F Is A GS-Function If And Only If The Conjugate Function F * Is Supermodular. As A Corollary We Prove That Any GS-Function Is Submodular. We Provide Also A Rule For Calculation Of The Derivative Of The Convolution Of Several Concave Functions.

Keywords
concave functions, supermodularity, submodularity, Fenchel duality
Date of publication
01.10.2015
Number of purchasers
0
Views
94
Readers community rating
0.0 (0 votes)
Cite Download pdf

To download PDF you should sign in

1

References



Additional sources and materials

Danilov V.I., Lang K. (2001). Kusochno-linejnye funktsii poleznosti, udovletvoryayuschie usloviyu valovoj zamenimosti // Ehkonomika i matematicheskie metody. T. 37. Vyp. 4. S. 45–50.

Danilov V.I., Koshevoj G.A., Lang K. (2013). Ravnovesiya na rynke nedelimykh tovarov // Zhurnal Novoj ehkonomicheskoj assotsiatsii. T. 2(18). S. 10–34.

Nikajdo Kh. (1972). Vypuklye struktury i matematicheskaya ehkonomika. M.: Mir.

Obehn Zh.-P. (1988). Nelinejnyj analiz i ego ehkonomicheskie prilozheniya. M.: Mir.

Polterovich V.M., Spivak V.A. (1982). Otobrazheniya s valovoj zamenimost'yu v teorii ehkonomicheskogo ravnovesiya. V kn. “Itogi nauki i tekhniki. Sovremennye problemy matematiki”. T. 19. M.: VINITI. S. 111–154.

Rokafellar R. (1973). Vypuklyj analiz. M.: Mir.

Danilov V.I., Koshevoy G.A., Lang C. (2003). Gross Substitution, Discrete Convexity, and Submodularity // Discrete Applied Mathematics. Vol. 131. P. 283–298.

Gul F., Stacchetti E. (1999). Walrasian Equilibrium with Gross Substitutes // Journal of Economic Theory. Vol. 87(1). P. 95–124.

Kelso A., Crawford V. (1982). Job Matching, Coalition Formation and Gross Substitutes // Econometrica. Vol. 50. P. 1483–1504.

Murota K. (2003). Discrete Convex Analysis. Philadelphia: SIAM.

Topkis D.M. (1998). Supermodularity and Complementarity. Princeton: Princeton Univ. Press.