A NUMERICAL METHOD FOR SOLVING BIMATRIX GAMES
Table of contents
Share
Metrics
A NUMERICAL METHOD FOR SOLVING BIMATRIX GAMES
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Pages
94-104
Abstract

We propose a method for solving bimatrix games based on a search of a global minimum of the Nash function. Choosing one by one some initial pure strategies, the method finds an exact solution of the game, if the complementarity condition holds, or it gives an acceptable approaching to the set of Nash points. The numerical tests of the method identified its advantages and disadvantages.

Keywords
convex game, Nash point, Nash function, bimatrix game, pure strategy, mixed strategy, complementarity
Date of publication
01.10.2013
Number of purchasers
0
Views
65
Readers community rating
0.0 (0 votes)
Cite Download pdf 100 RUB / 1.0 SU

To download PDF you should sign in

Full text is available to subscribers only
Subscribe right now
Only article
100 RUB / 1.0 SU
Whole issue
0 RUB / 0.0 SU
All issues for 2013
0 RUB /  SU
1

References



Additional sources and materials

Gol'shtejn E.G. (2002). Metod resheniya variatsionnykh neravenstv, opredelyaemykh monotonnymi otobrazheniyami // Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki. T. 42. № 7.

Gol'shtejn E.G. (2008). O monotonnosti otobrazheniya, svyazannogo s neantagonisticheskoj igroj dvukh lits // Ehkonomika i mat. metody. T. 44. Vyp. 4.

Strekalovskij A.S., Orlov A.V. (2007). Bimatrichnye igry i bimatrichnoe programmirovanie. M.: Fizmatlit.

Mills H. (1960). Equilibrium Points in Finite Games // J. of the Society for Industrial and Applied Mathematics. Vol. 8. No. 2.