ON FORECASTING AND PLANNING MODELS OF SOCIAL AND ECONOMIC PROBLEMS
Table of contents
Share
Metrics
ON FORECASTING AND PLANNING MODELS OF SOCIAL AND ECONOMIC PROBLEMS
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Pages
3-18
Abstract

In order to study social and economic problems a mathematical model of joint search for exogenous parameters forecast and optimal plan leading to global optimisation problem is considered. This model, leading to searching the fixed-point for superposition of two many-valued mappings, is equivalent to complex global optimization problem.

Keywords
economic and mathematical modelling, forecast, optimal plan, many-valued mapping (M.-v. m.), fixed-point of M.-v. m., global optimization problem
Date of publication
01.04.2013
Number of purchasers
0
Views
51
Readers community rating
0.0 (0 votes)
Cite Download pdf 100 RUB / 1.0 SU

To download PDF you should sign in

Full text is available to subscribers only
Subscribe right now
Only article
100 RUB / 1.0 SU
Whole issue
0 RUB / 0.0 SU
All issues for 2013
0 RUB /  SU
1

References



Additional sources and materials

Arkin V.I. (1979). Svyaz' mezhdu metodami dinamicheskogo programmirovaniya i stokhasticheskim printsipom maksimuma (Otsenka optimal'nogo plana). V sb.: “Teoretiko-veroyatnostnye metody v zadachakh upravleniya ehkonomicheskimi protsessami”. M.: TsEhMI AN SSSR.

Arkin V.I., Evstigneev I.V. (1979). Veroyatnostnye modeli upravleniya i ehkonomicheskoj dinamiki. M.: Nauka.

Bar-Shalom Ya., Tsy Eh. (1980). Kontseptsii i metody upravleniya. V kollektivnoj monografii: “Fil'tratsiya i stokhasticheskoe upravlenie v stokhasticheskikh sistemakh”. M: Mir.

Bellman R. (1964). Protsessy regulirovaniya s adaptatsiej. M.: Nauka.

Bellman R., Drejfus S. (1965). Prikladnye zadachi dinamicheskogo programmirovaniya. M.: Nauka.

Bellman R., Kalaba R. (1969). Dinamicheskoe programmirovanie i sovremennaya teoriya upravleniya. M.: Nauka.

Birger E.S., Urinson Ya.M., Charnyj V.I. (1978). Opyt postroeniya dinamicheskoj mezhotraslevoj modeli // Ehkonomika i mat. metody. T. XIV. Vyp. 3.

Val'ter Ya. (1976). Stokhasticheskie modeli v ehkonomike. M.: Statistika.

Evstigneev I.V., Katyshev P.K. (1979). Ob odnoj veroyatnostnoj modeli ehkonomicheskoj dinamiki i ravnovesiya. V sb.: “Teoretiko-veroyatnostnye metody v zadachakh upravleniya ehkonomicheskimi protsessami”. M.: TsEhMI AN SSSR.

Ershov Eh.B. (2008). Razvitie i realizatsiya idej modelej mezhotraslevogo vzaimodejstviya dlya rossijskoj ehkonomiki // Ehkonomicheskij zhurnal Vysshej shkoly ehkonomiki. T. 12. № 1.

Ershov Eh.B., Levitin E.S. (1989). Problema zamykaniya modelej optimal'nogo planirovaniya po ehkzogennym parametram. V sb.: “Ehkonomiko-matematicheskie modeli i metody”. Voronezh: Izd-vo Voronezhskogo universiteta.

Ershov Eh.B., Levitin E.S. (1992). O zadache sovmestnogo opredeleniya prognoza i plana v slozhnykh sistemakh. V sb.: “Obratnye zadachi matematicheskogo programmirovaniya”. M.: Vychislitel'nyj Tsentr RAN.

Kol'tsov A.V. (1980). K voprosu o soglasovanii mezhotraslevykh i ehkonometricheskikh modelej planirovaniya i prognozirovaniya. V sb.: “Funktsional'nye bloki sistemy modelej perspektivnogo planirovaniya narodnogo khozyajstva”. M.: TsEhMI AN SSSR.

Levitin E.S. (1992). Teoriya vozmuschenij v matematicheskom programmirovanii i ee prilozheniya. M.: Nauka.

Levitin E.S. (1995). Optimizatsionnye zadachi s ehkstremal'nymi ogranicheniyami // Avtomatika i telemekhanika. № 7, 12.

Levitin E.S. (2011). O priblizhennoj global'noj minimizatsii s zadannoj tochnost'yu dlya zadach optimizatsii s DC-funktsiyami. Sb. trudov IV Mezhdunarodnoj konferentsii “Sistemnyj analiz i informatsionnye tekhnologii”. T. 1. Abzakovo. 17–23 avgusta 2011 g.

Chelyabinsk: Izd-vo Chelyabinskogo gosudarstvennogo universiteta.

Levitin E.S. (2012). O bazovoj zadache i vazhnejshikh reduktsiyakh k nej pri priblizhennom poiske global'nogo minimuma metodom vetvej i granits. IX Vserossijskaya shkola-seminar “Prikladnye problemy upravleniya makrosistemami” (materialy dokladov). ISA

RAN i Institut informatiki i matematicheskogo modelirovaniya tekhnologicheskikh protsessov Kol'skogo nauchnogo tsentra. Apatity: KNTs.

Morz F.M., Kimbell D.E. (1956). Metody issledovaniya operatsij. M.: Sovetskoe radio.

Petrakov N.Ya., Rotar' V.I. (1978). K voprosu ob ehkonomiko-matematicheskoj modeli upravleniya, uchityvayuschej faktor neopredelennosti // Ehkonomika i mat. metody. T. XIV. Vyp. 3.

Rayatskas R.L., Sutkajtis V.P. (1978). K probleme modelirovaniya vzaimosvyazej obschestva i prirody // Ehkonomika i mat. metody. T. XIV. Vyp. 3.

Sorenson G. (1980). Obzor metodov fil'tratsii i stokhasticheskogo upravleniya v dinamicheskikh sistemakh.

V kollektivnoj monografii “Fil'tratsiya i stokhasticheskoe upravlenie v stokhasticheskikh sistemakh”. M.: Mir.

Fel'dbaum A.A. (1963). Osnovy teorii optimal'nykh avtomaticheskikh sistem. M.: Fizmatgiz.

Yaremenko Yu.V., Ershov Eh.B., Smyshlyaev A.S. (1975). Model' mezhotraslevykh vzaimodejstvij // Ehkonomika i mat. metody. T. XI. Vyp. 1.

Greene W.H. (2008). Econometric Analysis. Pearson Education, Inc., Upper Saddle River, New Jersey.

Harrison R., Nikolov K., Quiun M. et al. (2005). The Bank of England Quarterly Model. [Ehlektronnyj resurs] Bank of England 2005 (ISBN 1 857301536). Rezhim dostupa: http://www.bankofEngland.co.un/publication/ other/beqm/beqmfull.pdf, svobodnyj. Zagl. s ehkrana. Yaz. angl. (data obrascheniya: dekabr' 2012 g.).

Laning J.H., Battin R.H. (1956). Random Processes in Automatic Control. N.Y.: McGrow-Hill. (Perevod: LehningDzh., Behttin R. (1958). Sluchajnye protsessy v zadachakh avtomaticheskogo upravleniya. M.: IL.)

Newton G.C., Gould L.A., Raiser J.F. (1957). Analytical Design of Linear Feedback Controls. N.Y.: Wiley (Perevod: N'yuton D., Guld L., Kajzer D. (1961). Teoriya linejnykh sledyaschikh sistem. Analiticheskie metody rascheta. M.: Fizmatgiz.)